
Runtime error checking for novice C programmers

Matthew Heinsen Egan, Chris McDonald
Computer Science and Software Engineering

University of Western Australia
Crawley, WA 6009, Australia

m.heinsen.egan@graduate.uwa.edu.au, chris.mcdonald@uwa.edu.au

ABSTRACT
We present SeeC, a novice-focused tool for the C program-
ming language that records the execution of student pro-
grams, detects runtime errors, and allows students to review
their program’s execution in a graphical environment.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
K.3.2 [Computers and Education]: Computer and In-
formation Science Education

General Terms
Human Factors, Languages

Keywords
Novice programmers, debuggers

1. INTRODUCTION
Newcomers to the C programming language often expe-

rience great difficulties with runtime errors, exacerbated by
the language’s limited error checking and its concept of un-
defined behavior. Typical errors include array-bounds vi-
olations, use of uninitialized memory, dereferencing invalid
pointers, passing invalid pointers to standard library func-
tions, and passing non-terminated character arrays to string
handling functions.

2. SEEC
SeeC is a novice-focused tool which can detect all of these

errors and describe them with regard to the user’s source
code. Furthermore, SeeC records the program’s execution
and provides a simple graphical interface for the user to
move backwards and forwards through their program’s exe-
cution history. This allows users to reason backwards from
a runtime error in order to determine the true cause of the
error, or to simply inspect the behavior of their program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE 2013, University of Kent, Canterbury, England
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

SeeC uses LLVM, introduced by Lattner and Adve [1],
to perform compile-time instrumentation on student pro-
grams: inserting code for execution tracing and error de-
tection, and redirecting function calls from the C standard
library to error-checking wrapper functions. These functions
check input values against information from the execution
tracing system, allowing them to detect invalid usage such
as passing a non-terminated character array to a function
that expects a C string. This allows SeeC to produce errors
that describe the program’s misuse of the standard library,
rather than the errors that result from that misuse.

3. COMPARISON WITH MEMCHECK
C’s long and fruitful life has seen the creation of numer-

ous debuggers and error detectors, such as the Valgrind tool
Memcheck, which detects various runtime memory errors [2].
Valgrind’s dynamic instrumentation can be used with pre-
compiled binaries, but compile-time instrumentation allows
access to more semantic information, providing the oppor-
tunity for increased error detection with precise reporting.
SeeC can show the exact expression that is responsible for
an error, rather than only showing the containing line.

We compared the error detection of SeeC and Memcheck
by testing the correctness of 170 student project solutions
collected during the 2nd-semester 2012 presentation of our
University’s first year course on the C programming lan-
guage and Operating Systems. SeeC detected errors in forty-
three student programs for which Memcheck detected no
errors (seven of these were “benign” uses of uninitialized
memory, allowed by Memcheck). For all programs in which
Memcheck detected errors, SeeC also detected errors.

4. ACKNOWLEDGEMENTS
This research is partially supported by an Australian Post-

graduate Award.

5. REFERENCES
[1] C. Lattner and V. Adve. LLVM: A Compilation

Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar
2004.

[2] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In Proceedings
of the annual conference on USENIX Annual Technical
Conference, ATEC ’05, pages 2–2, Berkeley, CA, USA,
2005. USENIX Association.

