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ABSTRACT
Debugging is a source of great frustration for most novice
programmers. Standard and professional debugging tools
are unsuitable for novice programmers, because they are
overly complex and do not provide the basic information
that novices frequently require. We describe an ongoing
project to design, build, and evaluate novice-focused de-
bugging tools supporting the standard C programming lan-
guage. In particular, our focus is on detecting, reporting,
and reviewing the typical runtime errors that confuse and
frustrate student programmers – accesses to invalid memory,
reading from uninitialized memory, and C’s often“defined to
be undefined” behaviour. In addition, our tool features in-
tegrated execution tracing so that students receive not only
very informative error reporting, but the ability to replay
the entire history of their program leading to that error.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
K.3.2 [Computers and Education]: Computer and In-
formation Science Education

General Terms
Human Factors

Keywords
Novice programmers, debuggers

1. INTRODUCTION
Debugging can be troublesome for novice programmers as

it requires the simultaneous application of a wide range of
knowledge, which novice programmers are yet to acquire.
If a novice programmer does not have the necessary knowl-
edge to debug their program then the debugging process
may consume large amounts of their time, prevent them
from completing assigned tasks, and ultimately contribute
to decisions to withdraw from programming courses.
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The standard C programming language can be especially
difficult for newcomers. In particular, pointers and manual
memory management can present difficulties both in under-
standing at a conceptual level, and in debugging the la-
conically described runtime errors which result from their
misuse. Most newly developed novice-focused debugging
systems are designed for object-oriented programming lan-
guages, as introductory teaching has focused on these lan-
guages, and the most notable tools developed to assist novice
C programmers are predominately unmaintained.

Research from the fields of programming languages and
compilers has developed many advanced debugging tech-
niques, but they are typically only supported by tools de-
signed for expert programmers, rather than for novices. The
complexity of these tools, and the time required to learn
their use, at even a modest level, are often insurmount-
able hurdles for novice students. Furthermore, while these
tools can be used to locate runtime errors, they do not assist
novice programmers to understand those errors.

In this paper we describe our ongoing project to design,
develop, and evaluate novice-focused debugging tools for the
C programming language. We discuss the design and imple-
mentation of our prototype tool, SeeC (pronounced ’seek’),
and evaluate its error detection and reporting using a large
sample of project submissions from undergraduate students.
SeeC is designed to assist novice programmers by automat-
ically recording the execution of their programs, detecting
runtime errors, and allowing review of the execution in a
simple graphical environment. The approach taken is that
the execution of novices’ programs is always being recorded,
so that execution may always be reviewed, in preference to
re-running a program which may only fail intermittently.

Section 2 discusses the C programming language and the
difficulties that it presents to students and educators. Sec-
tion 3 discusses novice programmers’ difficulties with debug-
ging, and describes the framework that we follow to evaluate
and design debugging systems. Section 4 considers existing
debugging tools for both novice and expert programmers.
Section 5 discusses the implementation requirements of our
proposed debugging system. Section 6 discusses our use of
the LLVM compiler infrastructure to implement execution
tracing. Section 7 discusses our implementation of runtime
error detection. Section 8 discusses our use of the Clang
project to acquire precise information about the syntactic
and semantic structure of students’ C source code. Sec-
tion 9 compares SeeC’s error detection and reporting to that
of Memcheck, the well-known Valgrind tool. We finally sum-
marize our discussion and highlight future plans.



2. ON TEACHING C
For many years C has been one of the most widely-used

programming languages. A great number of projects are
implemented in C, from operating system kernels to end-
user programs, and it has influenced several other popu-
lar languages, such as C++, Objective C, Java, and C#.
Despite C’s age, the growing importance of embedded and
sensor-based systems has cemented C’s significance in mod-
ern computing. Gaspar et al. reported on the results of
an anonymous online survey designed to determine the role
of the C language in the modern computing curricula [11].
The survey found that while respondents used C in only 14%
of introductory courses and 10.9% of intermediate courses,
67% use C in other courses – primarily Operating systems
and Networking:

“. . . the very aspects of C which are perceived as
a pedagogical hindrance in introductory courses
can be useful to provide a more in-depth under-
standing of programming at later stages of stu-
dent education.” [11]

Lee et al. noted that moving to a Java-based introduc-
tory sequence “created a gap in knowledge as the students
progress to upper level courses like operating systems and
computer graphics, where they need a command of C and
the UNIX environment” [22]. Desnoyers noted that many
students had no previous exposure to an unsafe language
when first encountering C in an operating systems course [7].
Moreover, the number of potential topics in any Computer
Science curriculum often means that the C programming
language can no longer be explicitly taught in some degrees,
and students must study it at their own pace to attain the
knowledge assumed for later courses.

Students learning the C programming language are often
experiencing their first introduction to pointers and man-
ual memory management. Many studies have noted that
students encounter difficulty while learning to use pointers
and manual memory management. Lahtinen et al. surveyed
students and teachers, and found that on average pointers
and references were rated the most difficult programming
concepts to learn [19]. Brusilovsky et al. surveyed computer
science educators, and found that pointers were the most fre-
quent response for difficult to learn concepts, and the second
most frequent response for difficult to teach concepts [2].

Students at The University of Western Australia are in-
troduced to C in a first year course covering core aspects of
a procedural programming language and their relationship
to core operating systems concepts. The course is part of
the required sequence for traditional Computer Science stu-
dents, who later apply their knowledge in networking and
security courses, but is also taken by many Electronic Engi-
neering students who later apply their knowledge in courses
on embedded systems and robotics.

Of our cohort of nearly two hundred students, 50% learn
Java in the prior semester as their first programming lan-
guage, 30% are learning C as their first programming lan-
guage and, for most students, it is their first exposure to
an “unsafe” language. We would like our students to have
access to a software tool that not only makes debugging ef-
fective, but both accessible and informative, so that they can
devote more time to learning and spend less time struggling
to debug runtime errors.

3. THE DEBUGGING FRAMEWORK
Anecdotal reports often indicate that debugging is dif-

ficult for novice programmers. Many formal studies have
investigated the nature of the debugging process for both
expert programmers and novice programmers, and show the
kind of unique difficulties that novices experience, and how
detrimental they can be to a novice’s progress.

Seppälä reported that a questionnaire given to students
who were studying Java in their main programming course
found that “43 percent of the students claimed that they
spent most of their time trying to make their programs con-
form to exercise specifications or trying to fix runtime er-
rors” [27].

Ko and Myers presented a framework for studying soft-
ware errors [16] which we have used to evaluate the design of
existing debugging tools, and to guide the design of our pro-
totype debugging tool. This framework is based on studies
of programming and debugging, and general research on hu-
man error. The framework defines the correctness of a pro-
gram relative to the program’s design specifications, which
define the system’s behavioural and functional requirements.
The framework defines three terms for describing runtime
errors:

Runtime failures occur when a program’s behaviour does
not comply with its design specifications, e.g. it pro-
duces incorrect output or crashes.

Runtime faults exist when a program’s runtime state may
lead to a runtime failure, e.g. when an incorrect value
has been calculated, or a piece of code has been inap-
propriately executed.

Software errors are any pieces of code that may cause a
runtime fault during the program’s execution.

Note that software errors may lie dormant until circum-
stances cause them to manifest a runtime fault, and similarly
that a runtime fault will not necessarily produce a runtime
failure. However, the presence of a runtime failure guar-
antees that at least one runtime fault exists, which in turn
guarantees that at least one software error exists.

Within this framework, we can consider the debugging
process as follows: after a programmer becomes aware of a
runtime failure, they must locate the software errors respon-
sible and correct them. This often involves the intermediate
task of finding the runtime faults responsible for the ob-
served runtime failure. When the programmer has located
the runtime faults, they use their knowledge to identify the
software errors responsible, and then to correct those errors.

Ducassé and Emde identified seven kinds of knowledge
necessary for debugging [9], namely knowledge of: the in-
tended program; the actual program; the programming lan-
guage; bugs; debugging methods; general programming ex-
pertise; and the application domain. For student program-
mers who are yet to acquire this knowledge, the debugging
process may consume inordinate amounts of time, and pre-
vent further progress on their assigned tasks.

Fitzgerald et al. performed a multi-institutional study of
novice debuggers [10]. The study found that when a novice
can locate a software error they are usually able to correct
that error. However, locating software errors can be very
difficult. If the programmer has a limited knowledge of de-
bugging techniques, the initial process of locating runtime



faults may be long and tedious. If the programmer has an
incomplete or incorrect understanding of the programming
language, the intended program, general programming ex-
pertise, or the application domain, then they may be unable
to identify the software errors responsible for runtime faults.
When novice programmers do not have sufficient knowl-
edge to successfully debug their programs, they will typi-
cally either stop working altogether, make random changes
to the program, or completely rewrite sections of the pro-
gram. None of these approaches are ideal. We would prefer
that the novice gained the knowledge necessary to complete
the debugging process, and we believe that novice-focused
debugging tools can support this goal.

Debugging tools are typically used to gain knowledge of
the actual program, by controlling the program’s execution
and investigating its state at selected physical locations and
moments in time. This can be efficient for expert program-
mers, but novice programmers may also need to acquire
other kinds of knowledge, such as knowledge of the pro-
gramming language. An effective novice-focused debugging
tool is able to assist students by providing knowledge of the
programming language, bugs, debugging methods, and even
general programming expertise.

4. RELATED WORK
To evaluate the need for developing a debugging tool for

novice C programmers, and to guide the design of such a
tool, we evaluated a number of tools that have been used
to assist novices learning various languages. This section
summarizes the key findings that have influenced the design
and implementation of SeeC.

Java was the most common language among the tools we
surveyed, supported by eight tools. This may be expected,
given that Java was recently reported to be the most com-
monly used language in the introductory programming se-
quence in the U.S. by Davies, Polack-Wahl, and Anewalt [6].
Java’s popularity may also benefit from the presence of stan-
dard debugging interfaces: the Java Platform Debugger Ar-
chitecture was used by three of these tools.

Table 1: Languages supported

Number of tools

Language Subset Full

Java 1 7
C 1 2
C++ 2 0
Debugging Information 0 2
Other 1 8

The next most commonly supported language was C, sup-
ported by three tools. Two tools supported a subset of the
C++ language. We also surveyed two tools that acted as
front-ends to standard debuggers, thus supporting any pro-
gram compiled with standardized debugging information.
The remaining languages were each supported by only a
single tool, and include custom-designed educational lan-
guages as well as OPS-5, Perl, Prolog, Python, and a subset
of Pascal. The number of tools supporting each language is
presented in Table 1.

The tools that explicitly supported the C programming
language were ALMA [4], Bradman [30], and ETV [31]. Stu-
dents learning C could also use the systems that leverage
standard debuggers: DDD [32] and FIELD [26].

ALMA is a program visualization system presented by
da Cruz, Henriques, and Pereira [4]. ALMA operates on
language-independent decorated abstract syntax trees, gen-
erated by language-dependent parsers. Parsers were devel-
oped for two languages: LISS and C. da Cruz, Henriques,
and Pereira discuss ALMA’s atypical debugging features,
specifically by comparing ALMA to DDD [5]. In particular,
it is argued that ALMA can be a more suitable pedagogical
tool than a traditional debugger:

“. . . if we are just interested in understanding the
program’s control or data flow, the [traditional
debugger’s] visualization of that mess of regis-
ters, and hexadecimal codes or addresses can be
awkward.”

Rather than visualize these low-level details, ALMA focuses
on high-level concepts, such as explicitly visualizing param-
eter passing. ALMA is a prototype system: it does not sup-
port pointers or objects, and has a limited user interface,
e.g. it does not support breakpoints. No formal evaluations
are presented of ALMA’s educational effectiveness.

Bradman is a system designed to assist novice program-
mers learning C, presented by Smith and Webb [30]. Brad-
man is a visual interpreter which “assists the user by giving
him/her a visible model of the workings of the program”
and an “explicit, detailed explanation of the effect of each
statement as it is executed.” Bradman features explanatory
program visualization: the debugged program’s execution is
explained by automatically generated textual descriptions.
Experimental evaluation of this feature, wherein students
used Bradman either with or without the feature, showed
that students with access to the feature felt more strongly
and more often that Bradman assisted them in finding bugs.
Bradman also detects some runtime errors, such as mis-
matched argument types used with C’s formatted printing
functions, and reports these errors “as they are uncovered,
relating them to the context in which they occur with clear
description of both the error and its causes.” To our knowl-
edge, Bradman is neither publicly available nor maintained.

Terada presented Execution Trace Viewer (ETV), a tool
for recording and reviewing the execution of programs [31].
Traces can be created by using language-specific trace gen-
erators to run a program. Trace generators were developed
for four languages: C, using a Perl script to control GDB;
single-threaded Java, using the Java Debug Interface; Perl,
using a Perl script to control the Perl debugger; and UtiLisp,
using a modified interpreter. Generated traces can be visu-
alized by ETV, which supports random access to any point
of time in the trace, and displays the values of variables at
the current point in time. No traditional debugging func-
tionality, such as breakpoints, is supported. ETV visualizes
nested function calls using overlapping windows of source
code. Terada argues that a view of source code is the most
appropriate visualization:

“Because the user is the author of the code, the
code is suitable and understandable for the user.
. . . Diagrams and figures are certainly helpful, but
the user needs to understand the linkage between



them and the code. In addition, they are not
suitable for automatic generation.”

However, novice programmers may not be the author of the
code that they are viewing and, even if they are the author,
they may not correctly understand it.

The Data Display Debugger, DDD, is a visual debugging
front-end for a number of text-based debuggers, including
GDB. It is not designed for novice programmers, but we
mention it here because it is a well known visual debugger
and, as such, is often used as a comparison for new visual
debugging tools. Zeller and Lütkehaus presented DDD, and
described its graphical data display, where users can inter-
actively construct graph visualizations of the runtime state
of the program being debugged [32].

The Friendly Integrated Environment for Learning and
Development, FIELD, was an IDE for UNIX-based pro-
gramming, which integrated a wide variety of existing UNIX
tools and newly developed tools into a common framework.
FIELD’s design and features are retrospectively discussed by
Reiss [26]. While FIELD integrated numerous tools, many
of which are now standard features in programming envi-
ronments, we will focus on the debugging front-ends and
the data structure displayer. FIELD used the native system
debugger, for which it provided both a CLI and GUI. Other
tools accessed the debugger via FIELD’s central message
server, which provided a standard interface for tools to dis-
tribute information or send commands to each other. The
data structure displayer automatically generated diagram-
matic visualizations of data structures in the user’s program,
using information obtained from the system debugger. No
formal evaluation is presented of the visualizations’ educa-
tional effectiveness, but Reiss states that:

“The data structure display tool has been widely
used in introductory programming classes both
to provide an understanding of the student’s data
structures and to facilitate object-oriented de-
bugging.”

We also considered the implementation and features of de-
bugging tools that were designed for other languages. While
these tools cannot directly benefit students of the C pro-
gramming language, they have shown the effectiveness and
potential of novice-focused debugging systems, and thus il-
luminated features that would be desirable in a debugging
tool for novice C programmers.

Program visualization is the act of generating a graphi-
cal visualization of the static structure or dynamic state of
a program. The vast majority of tools that we surveyed
support some form of program visualization. In particu-
lar, evaluations of Jeliot 3 [14, 24] and jGRASP [13, 3] have
shown that dynamic program visualizations effectively assist
novice Java programmers with debugging.

Explanatory program visualization consists of automati-
cally generating textual explanations that describe a pro-
gram’s runtime behaviour with reference to its source code.
This feature was previously mentioned in our discussion of
Bradman. Formal evaluations performed by Brusilovsky [1],
and Smith and Webb [30], found that explanatory program
visualization effectively assists novices to perform debugging
tasks.

Many systems have shown the benefit of being able to re-
verse or “step back” a program’s visible state. Using tradi-
tional debugging methods, novices may easily step forwards

past an error’s source or symptom, forcing them to restart
the whole program’s execution. Trace-based debugging sys-
tems allow students to start from a bug’s symptom, and then
work backwards to find the causes that led to that symptom.
This feature is supported by ZStep 95 [23], The Whyline [15,
17, 18], and JIVE [12].

Novice C programmers can be deceived by the language’s
concept of undefined behaviour, which allows runtime faults
to inconsistently produce runtime failures. Numerous tools
have been developed to automatically detect such errors at
runtime, e.g. the Valgrind tool Memcheck dynamically in-
struments program binaries in order to detect errors with
memory usage [29]. Both Desnoyers [7] and Lee et al. [22]
describe student’s use of Memcheck to detect memory errors.
Memcheck is a powerful and efficient error detector, but it is
designed for expert programmers and its descriptions of de-
tected errors are often insufficient for novice programmers.
Furthermore, the code that exhibits an error may be distant
from the code that causes the error. One may attempt to
use a backwards reasoning strategy to locate the underlying
software error, but for complicated errors this will require
increasingly taxing mental calculations. When it is impossi-
ble to determine the prior state of variables, or the executed
path, one may need to restart the program and set a break-
point at an earlier position. This is time consuming, and can
be troublesome if the program does not consistently exhibit
the runtime fault. In this case it would be preferable to have
a system that combines automatic runtime error detection
with trace-based debugging.

Finally, traditional debuggers are designed for experienced
programmers: they use concise, technical terminology, and
contain scores of features to support a wide variety of use
cases. They often require newcomers to learn textual com-
mands or to search through densely populated graphical in-
terfaces, using new icons and deep menus. A novice-focused
tool should provide a simple user interface which enables
newcomers to begin using the tool with minimal learning
investment.

5. DESIGNING SEEC
Having considered many existing debugging tools, as well

as the literature on novice programmers, novice debuggers,
and the debugging process, we have identified the primary
desirable features for a novice-focused debugging tool to be
trace-based debugging and automatic error detection. We
are unaware of a single, novice-friendly tool for the C pro-
gramming language that combines these features into a sin-
gle workflow. SeeC is designed to support these features,
and to be extensible and reusable in the future. To this
end, SeeC must be able to record the execution of students’
programs, recreate the historical states of those programs,
automatically detect runtime errors, and produce detailed
error messages that relate directly to the student’s original
source code.

Our current prototype system is used as follows: the stu-
dent compiles their C language program using SeeC; the
resulting binary is executed as normal; this binary auto-
matically checks for runtime errors during execution, and
produces a file containing an execution trace; the trace file
can be opened in our graphical trace viewer, allowing the
student to navigate through the execution history of their
program. Figure 1 presents the graphical trace viewer dis-
playing a runtime error.



Figure 1: Reviewing an execution trace in SeeC

From our survey of existing novice-focused debugging tools
we found that all actively maintained tools employed exist-
ing systems to implement their execution tracing and source
code parsing. For example, several tools use the Java Plat-
form Debugger Architecture, which provides standard in-
terfaces for creating Java debugging tools [25]. However,
the C programming language does not have such interfaces,
thus most tools for C are implemented using custom-built
parsers, interpreters, and compilers. The resulting tools of-
ten have incomplete language support and the bespoke im-
plementations have greatly increased maintenance require-
ments. Both of these factors have contributed to the limited
adoption of these tools.

A number of debugging tools have been built on top of
existing debuggers, particularly The GNU Project Debugger
(GDB). This allows tools to debug any program that has
been compiled with standardized debugging information. It
is common for such tools to control an instance of GDB via
its textual interface. GDB has a special “machine oriented”
interface, GDB/MI, which is designed to support this use
case. Unfortunately the GDB/MI interface is incomplete:
it doesn’t allow full access to the power of GDB, and its
support can vary from platform to platform. GDB also has
limited support for reversible debugging. While standard
debugging information is typically sufficient for experienced
programmers, novice programmers can benefit from more
precise representations of their programs.

There are several frameworks which support the construc-
tion of tools that use binary instrumentation, such as Val-
grind, DynamoRIO, or Pin. These frameworks allow tools to
instrument programs without (re)compiling them, but at the
binary stage much semantic information has already been
lost. Standard debugging information can be used to re-
late the binary instructions back to the original source code,
but this information is not precise enough to support our
novice-focused design goals, as we will discuss in Section 8.

The landscape of advanced“compiler-level” tools for C has
recently seen significant developments, which we believe will
enable our debugging tools to provide robust language sup-
port with increased sustainability. Moreover, these recent
developments need to be brought to the classroom in the
form of novice-focused tools, so that students may focus on
their own learning, and not struggle with inapproriate, or
incomplete, tools.

6. EXECUTION TRACING WITH LLVM
The LLVM Compiler Infrastructure is a collection of mod-

ular compiler technologies, consisting of a number of sub-
projects which cover optimization, code generation, compila-
tion, debugging, static analysis, standard library implemen-
tations and more. LLVM’s core is built around the LLVM
intermediate representation (the “LLVM IR”): a low-level,
typed, static single assignment, source and target indepen-
dent assembly language. For a thorough (though dated)
introduction to LLVM see Lattner and Adve [20].

A program in the LLVM IR is composed of Modules. Each
Module contains a list of Global Variables and Functions.
Functions can be either declared, in which case the imple-
mentation exists in another Module or external library, or
defined, in which case the Function contains a list of Basic
Blocks, each of which contains a list of Instructions. For a
thorough description of the LLVM IR see the online language
reference by Lattner and Adve [21].

The LLVM IR is the centre of the compilation process:
language-specific front-ends convert source code into LLVM
IR, which can then be modified by various transformations,
before finally being lowered to target-specific machine code.
Transformations are commonly used for program optimiza-
tion, but they are not limited to this task. SeeC uses a trans-
formation to insert code that performs execution tracing and
runtime error detection. The target-independent nature of
the LLVM IR allows us to support numerous target plat-
forms using a single implementation of the transformation.
The source-independent nature of the LLVM IR simplifies
the implementation of the tracing system, reducing our sys-
tem’s maintenance requirements.

SeeC’s program transformation considers every Instruc-
tion in every defined Function, and may insert calls to an
external library either before the Instruction, to check for
possible errors, or after the Instruction, to record some in-
formation. For example when transforming a load Instruc-
tion, we insert a call before the load to ensure that the
target memory is readable, and we insert a call after the
load to record the loaded value, as shown in Figure 2. This
process is known as compile-time instrumentation.

The inserted calls pass information to our external library.
In this example the call will pass the index of the load In-
struction, the address of the load, and the size of the load.
Each call to the library is forwarded to a thread-specific ob-
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Figure 2: Instrumented load instruction

ject, which we refer to as a Thread Listener. Thread Listen-
ers handle error checking and execution tracing for a single
thread of execution. SeeC also maintains shared informa-
tion about the process state, such as the location and size of
dynamic memory allocations. This information is stored on
a single object, termed a Process Listener, which arbitrates
access from the Thread Listeners.

SeeC can use the trace information to recreate the “visi-
ble state” at any point in the recorded history of a process.
This includes the active dynamic memory allocations, visible
memory state, and the state of each thread. A thread’s state
contains the state of any active functions, and the function
states contain the state of any automatic memory alloca-
tions (i.e. local variables). The structure of this information
is shown in Figure 3.
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Figure 3: Visible process state

7. RUNTIME ERROR CHECKING
In the previous section we stated that SeeC checks for er-

rors before the execution of Instructions. This error checking
uses previously acquired information about the program’s
state, which is held by the Thread Listeners and the Pro-
cess Listener.

When the tracing library is notified about a change in
the process state it updates its own knowledge of the pro-
cess state. This knowledge includes the location and size of
dynamic memory allocations, the location and size of auto-
matic memory allocations (local variables), and a record of
which memory areas are initialized.

SeeC considers all memory to be uninitialized unless it
belongs to a global variable or it has been written to by the
student’s program, either directly or via a C standard library
function. When memory is deallocated it is again considered
to be uninitialized. The initialization information currently
operates with a byte-level granularity.

SeeC uses a conservative definition of memory ownership
and accessibility when checking the student’s program: if
memory was statically allocated, is currently allocated to a
local variable, or is currently dynamically allocated, then we

consider it to be owned by the program. If a standard library
function returns a pointer to some memory, e.g. strerror,
then we consider the memory to be known to the program.
All other memory is considered to be inaccessible.

SeeC’s uses this information to check for the following
kinds of errors, which are frequently seen in the programs of
novice programmers:

• Reading or writing inaccessible memory. For example,
by dereferencing a pointer that refers to a deallocated
local variable.

• Reading uninitialized memory. For example, by using
a local variable that has not been initialized.

• Dividing by zero.

• Passing a pointer to inaccessible memory to a standard
library function which will attempt to dereference the
pointer to access that memory.

• Passing a pointer to uninitialized memory to a stan-
dard library function which will read from that mem-
ory. For example, by passing an uninitialized local
character array to atoi.

• Passing a pointer to a too-small region to a standard
library function which would access memory outside of
that region. For example, by using strcat to append
to a C string that already fully occupies a memory
allocation.

• Passing a pointer that does not reference a valid C
string to a standard library function that requires a
valid C string. For example, by passing a character
array that is not null terminated to strlen.

• Passing invalid pointers to free or realloc. For ex-
ample, by attempting to free the same pointer multiple
times.

• Passing an invalid FILE pointer to a standard library
function. For example, by attempting to use a FILE

pointer after it has been closed.

• Simultaneously calling a non thread safe standard func-
tion from multiple threads. For example, by concur-
rently using strtok in multiple threads.

Checking the input and output of standard library func-
tions increases the implementation requirements of our sys-
tem, but is beneficial in other areas. A more general solu-
tion would be to link student’s programs to an instrumented
build of the standard library, but checking the usage of the
standard library functions allows us to produce more infor-
mative error messages.

When SeeC detects a runtime error which could result in
the program’s termination, e.g. by causing a segmentation
fault, then the tracing system will itself terminate the pro-
cess, as well as printing a message to indicate that a fatal
runtime error was detected. The student may open the trace
in SeeC to examine the nature and details of the error. If
the system detects a non-fatal error, such as passing over-
lapping source and destination blocks to strcpy, then it will
allow the process to continue.

All detected runtime errors are written into the execution
trace with the following information: the Instruction that



caused the error, the type of the error, and the specific cir-
cumstances of the error (e.g. the target address of an invalid
load). Each runtime error type has a localizable format
string which is used to generate textual descriptions of the
error. The Instruction that caused the error relates to the
program’s LLVM IR, but a debugging system should display
errors in terms of the student’s original source code. SeeC
achieves this using Clang, an LLVM sub-project, to create a
mapping from the LLVM IR to the original C source code.

8. CLANG
Clang is a front-end for compiling C, C++, Objective C,

and Objective C++ programs to LLVM IR. As with other
LLVM projects, Clang is designed as a modular collection of
libraries, and supports a diverse range of uses. For example,
a source code editing tool could use Clang’s parsing libraries
to implement syntax highlighting.

One can use Clang’s parsing and semantic analysis li-
braries to generate an Abstract Syntax Tree (AST) from
a program’s source code. SeeC uses the rich information in
Clang’s ASTs to describe runtime errors within the context
of the student’s source code.

Clang can produce debugging information to relate LLVM
IR, and machine code, back to the original source code. An
Instruction’s debugging information describes a source code
location by identifying a file, line, and column, but it is com-
mon for many Instructions in a complex expression to use
the same location. Furthermore, some AST nodes do not
occupy unique positions in the source code, making it diffi-
cult to reliably identify the exact node that was responsible
for an Instruction. We felt that novice programmers would
benefit from more precise information.

We inserted a small amount of additional code into Clang’s
code generation library to enable SeeC to accurately map
LLVM IR Instructions to their original AST nodes. Clang’s
code generation visits each AST node recursively and creates
the necessary LLVM IR Instructions. Whenever an Instruc-
tion is created our system attaches additional information to
identify the current AST node. This information is attached
using LLVM’s metadata system, which allows Instructions
to have arbitrary structured information attached to them
without affecting the meaning of the program. When Clang
has finished generating the LLVM IR for an lvalue or rvalue,
our system creates metadata to identify the LLVM IR Val-
ues which represent that lvalue or rvalue. When a student
is reviewing their program’s execution, SeeC uses this meta-
data to relate the program state back to their original source
code. The recreated program states refer to the program’s
LLVM IR, which itself contains metadata that refers to the
Clang AST, which itself contains detailed information about
the source code locations of its nodes.

9. DETECTING STUDENTS’ ERRORS
To evaluate SeeC’s suitability as a novice-focused tool to

support our first year course, we compared its error detec-
tion and reporting against that of the Valgrind tool Mem-
check, which is often recommended for classroom and labo-
ratory sessions. Both tools were used to test the runtime cor-
rectness of 170 student project submissions collected during
the 2nd-semester 2012 presentation of our first year course1.

1This comparison was not performed as part of the actual
assessment of the students’ projects.

Students were encouraged to work in pairs and given three
weeks to complete the project, which contributed 20% of
their assessment. This project demanded file input and out-
put, string parsing and formatting, and arithmetic calcula-
tions.

Six of the students’ submissions contained buffer overflows
which were detected by “checking” versions of standard li-
brary functions that were automatically used by the com-
piler2. If these functions detect an error then they abort the
process. Valgrind detects the resulting signal and prints a
stack trace, as shown in Listing 1.

Listing 1 Valgrind error message (abridged)

Process terminating... (SIGABRT)

at 0x2C482A: __kill (.../libsystem_kernel.dylib)

by 0x14689E: __chk_fail (.../libsystem_c.dylib)

by 0x1467EC: __strcpy_chk (.../libsystem_c.dylib)

by 0x1000011E4: main (FILE:##)

This trace includes the file and line of the offending func-
tion call (removed from this example). SeeC detects these
same errors at the time of the function call. For the case
shown in Listing 1, we produce the more helpful error de-
scription: “There was insufficient memory at the destination
of the pointer passed to function strcpy as the first param-
eter. In this case the function required 41 bytes, but only
30 were available.” SeeC also indicates the statement re-
sponsible for the error, and that statement’s location in the
student’s source code.

Four of the students’ submissions terminated due to bad
memory accesses. Valgrind again detects the resulting sig-
nal and prints a stack trace, along with a brief explanation
of the signal, e.g. “Non-existent physical address at address
0x. . . ”. If the invalid access occurred in the student’s code,
then SeeC detects and reports a similar error, e.g. “Attempt
to write unowned memory at address 0x. . . (one byte)”. How-
ever, SeeC also shows the exact statement that was respon-
sible for the memory access. If the invalid access was caused
by passing bad values to a standard library function, then
SeeC detects the error at the function call, producing a more
informative error, e.g.“There was insufficient memory at the
destination of the pointer passed to function fgets as the first
parameter. In this case the function required 775 bytes, but
only 744 were available.”.

Reading an indeterminate value from uninitialized mem-
ory does not necessarily constitute a runtime fault, so Mem-
check will only report an error when an indeterminate value
is used in a way that could affect the program’s behaviour,
or when a system call is passed an indeterminate value or a
pointer to uninitialized memory that would be read by the
system call. For novice programmers we feel it is appropri-
ate to discourage any use of uninitialized memory, so SeeC
uses the simplistic and highly restrictive approach of raising
an error when any indeterminate value is read from unini-
tialized memory, or when a pointer to uninitialized mem-
ory is passed to a standard library or system function that
would read from that memory. Due to these differences SeeC
reported the use of uninitialized data in fifteen programs,
whereas Memcheck reported misuse of uninitialized data in

2For further information see http://gcc.gnu.org/ml/gcc-
patches/2004-09/msg02055.html



just six programs. Eight of the reports issued by SeeC were
caused by manually copying or searching the entirety of a
fixed length character array, rather than ending the loop at
the string’s terminating null byte. While these particular
errors would not have lead to runtime failures, students will
benefit from improving their relevant code.

Most significantly, SeeC detected genuine errors in forty-
three student programs for which Memcheck detected no
errors. Seven of these errors were caused by the previously
discussed differences in handling uninitialized memory. Sev-
enteen were caused by accessing elements past the end of
a local or global array. Other errors included attempting
to append to the program’s argument strings using strcat,
passing unterminated“strings”to standard library functions,
and dividing by zero.

Compile-time instrumentation provides precise informa-
tion about the location and size of both statically allocated
and stack-allocated variables. This allows SeeC to detect
many errors with which Memcheck has difficulty, such as
the previously mentioned array overflows. Of course there
are many other advanced projects that use compile-time in-
strumentation to achieve efficient and precise error checking,
such as AddressSanitizer [28] and SAFECode [8]. SeeC’s pri-
mary difference is that it is specifically designed for novice
C programmers and, in particular, it features integrated ex-
ecution tracing so that students receive not only an error
message, but the ability to review (replay) the entire his-
tory of their program leading to that error.

10. SUMMARY AND FUTURE WORK
We have introduced our project focused on the design, de-

velopment, and evaluation novice-focused debugging tools
for the C programming language. We believe that by de-
signing debugging tools specifically for novice programmers
we can alleviate many of the difficulties that novices ex-
perience with debugging, reduce the amount of time that
novices spend debugging, and assist novices to build knowl-
edge whilst debugging.

The debugging process requires simultaneous use of a wide
range of knowledge, much of which is yet to be acquired by
novice programmers. Expert debugging tools assist users
to investigate the runtime behaviour of their programs, but
they will not assist novice programmers to acquire the other
knowledge they may need to complete the debugging pro-
cess. Furthermore, these tools have complex interfaces which
require users to invest additional time learning how to use
the tool for debugging. Novice-focused tools can assist stu-
dents by providing simple interfaces, automatically detect-
ing runtime errors, supporting trace-based debugging, and
by explaining and visualizing programs’ runtime behaviour.

We currently have a prototype system which is capable
of detecting several runtime errors, tracing the execution of
student programs, and reviewing execution traces using a
graphical interface. In the future we will extend our error
detection to cover more standard functions, and to provide
more thorough explanations of detected errors. We will ex-
tend the graphical interface to support contextual naviga-
tion through the execution trace, for example by allowing
the student to find the most recent time at which a variable
was assigned a value. We also plan to implement an ex-
planatory program visualization system, which will produce
textual descriptions of the runtime behaviour of student’s
code. Finally, we will evaluate the tool’s effectiveness at

assisting novice programmers to perform debugging tasks.
We will employ our debugging tool in the 2nd-semester

2013 presentation of our first year course, in lectures, labo-
ratory sessions, and on students’ personal machines. Inter-
ested readers are invited to contact the authors to discuss
our tool’s suitability for their courses.
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