
Dynamic evaluation trees for novice C programmers

Matthew Heinsen Egan1 Chris McDonald2

School of Computer Science and Software Engineering
University of Western Australia
Crawley, Western Australia 6009

Email: 1m.heinsen.egan@graduate.uwa.edu.au
2chris.mcdonald@uwa.edu.au

Abstract

The dynamic evaluation tree is a method of visualiz-
ing expression evaluation that annotates a program’s
source code with expression results. It is intended to
reduce students’ visual attention problems by remov-
ing the need to alternate between disparate source
code and expression evaluation windows. We gen-
eralise the dynamic evaluation tree to support ar-
bitrary expressions in the C programming language,
and present the first ever implementation for a novice-
focused program visualization and debugging tool.

Keywords: Novice programmers, debuggers, software
visualization

1 Introduction

Expression evaluation can be difficult for novice pro-
grammers to comprehend. An incomplete under-
standing of expression evaluation may make it ex-
ceedingly difficult for novices to identify and correct
malformed expressions in their own code. In a multi-
institutional study of novice debuggers, Fitzgerald
et al. (2008) found that the most difficult bugs for
their subjects to find and fix were arithmetic bugs (in
particular) and malformed statement bugs (in gen-
eral). Effective visualization of expression evaluation
may assist novice programmers to construct knowl-
edge of expression evaluation, including the behaviour
of individual operators, and to debug programs con-
taining malformed expressions.

Brusilovsky & Spring (2004) discussed a tutoring
system designed to assist students learn expression
evaluation in the C programming language, stating:

“For the students in our programming and
data structure courses based on C language,
expression evaluation is one of the most dif-
ficult concepts to understand. They have
problems with both understanding the order
of operator execution in a C expression and
understanding the semantics of operators.”

The web-based system, WADEIn, visualizes the step-
by-step evaluation of expressions consisting of math-
ematical and logical operators with int and double
type variables. More than 80% of students felt that
the system helped them to understand C operations.

Copyright c©2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computer Educa-
tion Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 160, Daryl D’Souza and Katrina Falkner,
Ed. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

Many existing software visualization systems use
a dedicated “expression evaluation” area to visual-
ize the individual operations performed during an ex-
pression’s evaluation (e.g. Jeliot 3, as presented by
Moreno et al. (2004); and The Teaching Machine de-
scribed by Bruce-Lockhart et al. (2007)). Animation
is commonly used to relate operations to the expres-
sion’s source code, and operands to memory visu-
alizations. For example, if an evaluated operator’s
operand is a variable, then the variable’s value might
“fly in” from the memory visualization.

Lahtinen & Ahoniemi (2009) introduced the “dy-
namic evaluation tree” for visualizing expression eval-
uation by annotating above or below a program’s
source code, e.g.:

int c = a
1

+ b
2

3

;

This concept was primarily motivated by the results
of an eye-tracking study of Jeliot 3 users, which
found that novice programmers “either switch their
visual attention repeatedly between different windows
or concentrate all the time on one of the windows”
(Lahtinen & Ahoniemi 2009). The dynamic evalu-
ation tree is intended to integrate expression evalu-
ation and source code representation, thus reducing
the switching of visual attention required by novice
programmers. Lahtinen and Ahoniemi discussed the
potential of adding the dynamic evaluation tree to the
VIP C++ program visualization system, but unfor-
tunately this work has not been continued.

Annotations in a dynamic evaluation tree main-
tain a visual relationship to their associated source
code, as opposed to animated visualizations which
only briefly show this relationship (e.g. by having the
relevant source code “fly in” to the evaluation area).
This explicit visualization of the expression evalua-
tion’s history may reduce the need for students to step
backwards and forwards, and clarify the relationships
between individual operations.

This paper discusses our implementation of a dy-
namic evaluation tree for the novice-focused program
visualization and debugging tool SeeC. Section 2 gen-
eralises the dynamic evaluation tree to support ar-
bitrary expressions in the C programming language.
Section 3 describes our implementation. Section 4
discusses integration with SeeC’s other components.
Section 5 compares our implementation with tradi-
tional visualizations of expression evaluation. Sec-
tion 6 discusses limitations in our implementation and
identifies future work. Finally, Section 7 summarizes
our discussion.



2 General C programs

Despite its age, the C programming language still
holds an important place in computing education.
While few traditional Computer Science courses teach
C as an introductory programming language in their
foundation years, C remains important in the later
teaching of operating systems and computer net-
working. C still enables students to understand the
close relationship between programming languages
and hardware in increasingly important subjects such
as robotics, embedded systems, and wearable com-
puting, and these subjects are often required by stu-
dents other than future computer scientists. Novice
C programmers are not necessarily novice program-
mers, and those whose entire exposure to program-
ming has been through safe languages still have to
address many challenges. Many of the traditional
problems with C, such as its practice of leaving much
as “defined to be undefined” and the challenges of
writing portable code across disparate operating sys-
tems and architectures, have been addressed by de-
tailed official standards, shifting the pressure to those
teaching C to do so well.

The simplicity and familiarity of the dynamic eval-
uation tree is a great strength. It provides a con-
cise, clear representation of complex expression eval-
uations. Implementing the dynamic evaluation tree
for SeeC required us to support arbitrary expressions
in the C programming language, introducing several
complicating details. This section discusses these
complications and the approaches that we employed
to ensure that the dynamic evaluation tree retains its
conciseness, clarity, and, we believe, usefulness.

The simplest problem is that an annotation’s text
may be wider than the annotated expression’s source
code. This may obscure the visual relationship be-
tween the annotation and source code, and could lead
to overlapping annotations. We prevent this simply
by truncating annotation text to the width of the ex-
pression’s source code. Students can view the com-
plete text by hovering the cursor over the annotation.

The dynamic evaluation tree is designed to anno-
tate a single line of source code, but students are free
to write an expression over multiple lines. This may
be uncommon in novice programmers’ code, but our
general purpose implementation must account for it.
Our straightforward solution is to reformat the ex-
pression’s source code, displaying it on a single line
while the dynamic evaluation tree is active.

The C programming language’s preprocessor may
also necessitate the use of modified source code to
represent expressions, as a single macro may expand
to multiple sub-expressions. If each expression had at
most a single child, we could simply stack the annota-
tions. For example, consider a typical implementation
of the NULL macro:

#define NULL ((void*)0)

NULL
integer literal: 0

cast: 0x0

For more complex macros the visualization will be-
come increasingly crowded. As an example, consider
the sys/stat.h header’s S_ISREG macro, defined by
The Open Group Base Specifications Issue 7 thus1:
“The value m supplied to the macros is the value of
st_mode from a stat structure. The macro shall eval-
uate to a non-zero value if the test is true; 0 if the test
is false.” A typical implementation of this macro is:

#define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

1http://pubs.opengroup.org/onlinepubs/9699919799/

Visualizing the complete tree created by using the
macro S_ISREG would expose students to unnecessary,
potentially confusing implementation details. Thus it
may be best to employ a black box representation by
restricting the visualization to the “input” and “out-
put” nodes: in this case, m and the result of the ==
operator, respectively. Conversely, it should be possi-
ble for students to observe the behaviour of code pro-
duced by their own macros: showing the preprocessed
code will allow students to observe their macro’s ex-
pansion, and a dynamic evaluation tree visualizing
the resulting expression’s behaviour.

In the C programming language an expression may
designate an object; such expressions are termed lval-
ues2. For example, in line 4 of Listing 1 the expres-
sions total, iptr, and iptr[i] are lvalues. An ex-
pression which does not designate an object, for ex-
ample the expression total + iptr[i], is commonly
referred to as an rvalue3.

Listing 1 Summing an array of int values

1 int sum_ints(const int *iptr, size_t n) {
2 int total = 0;
3 for (size_t i = 0; i < n; ++i)
4 total = total + iptr[i];
5 return total;
6 }

Some expressions require an lvalue, e.g. the unary
& operator produces the address of the designated ob-
ject, and the ++ operator increments the value stored
in the designated object. For most other uses an
lvalue is converted to the value stored in the desig-
nated object, e.g. iptr[i] in Listing 1. In terms of
the language implementation we might consider this
to represent the value being loaded from memory.
The behaviour of such lvalues poses a question for
the visualization of dynamic evaluation trees: should
we show the designated object, the value that was
stored in the designated object when the expression
was evaluated, or both? An explicit relationship to
the designated object will allow students to see where
values are coming from. This may be particularly use-
ful for array accesses and pointer dereferences. How-
ever, showing the value stored in the designated ob-
ject may be confusing if the value changes after the
expression is evaluated, for example:

number = 10 / number
2

5

;

When this assignment expression is completed the
value 5 will be stored in the object designated by
number. However, the value of the number expression
on the right hand side should still be 2, otherwise
the division’s result is nonsensical. Our approach is
to show two nodes: one for the lvalue, and one for
the rvalue it was converted to during evaluation. The
lvalue is annotated with descriptive placeholder text
rather than the designated object’s value. When the
student moves the cursor over this annotation, the
designated object is highlighted in SeeC’s standard
memory visualization.

Expressions with struct or union types are diffi-
cult to represent within an annotation, as they may
contain numerous fields and values, thus causing the

2ISO/IEC 9899:2011 (The C11 Standard) §6.3.2.1.1
3ISO/IEC 9899:2011 uses the term “value of an expression”.



textual representation to be far larger than the ex-
pression’s source code. If the expression is an lvalue
then we again show a placeholder and direct students
to a memory visualization for the complete value.
This is not possible for rvalue expressions, so we trun-
cate the annotation when necessary and show the
complete value when the student hovers the mouse
cursor over the node.

Pointers, often described as a threshold concept
in Computer Science (Boustedt et al. 2007, Roun-
tree & Rountree 2009), are a source of great diffi-
culty for novice C programmers, and so it is essen-
tial to effectively visualize pointer type expressions.
The raw value of a pointer is generally not impor-
tant for novice C programmers, rather they are con-
cerned with whether pointers are valid and which ob-
jects they reference. Displaying the value of the ref-
erenced object could visualize this information, but
might cause dangerous misconceptions about the se-
mantics of pointers. We handle this similarly to lval-
ues: the node’s annotation contains placeholder text,
and when students move the mouse cursor over the
node the referenced object is highlighted in SeeC’s
memory visualization. The placeholder text indicates
whether the pointer is valid, invalid, opaque, or NULL.

3 Implementation

We implemented a dynamic evaluation tree as an ex-
tension to the SeeC project: a system for novice C
programmers that performs execution tracing with
automatic runtime error detection, and provides pro-
gram visualization of the recorded execution traces,
as described by Heinsen Egan & McDonald (2014).
SeeC itself is built upon the Clang project4: a modu-
lar collection of libraries which implement a front-end
for compiling C, C++, Objective C, and Objective
C++, but are also designed to support diverse uses
by external clients. Students reviewing an execution
trace can step forwards or backwards to any point
in the process’ execution. The SeeC system provides
a “recreated state” of the process, which we use to
generate the dynamic evaluation tree.

The “recreated state” of the function that was ex-
ecuting provides us with the “currently active” state-
ment, which is either partially evaluated or has just
completed evaluation (in which case it may have pro-
duced a value). If this statement is an expression then
we walk up Clang’s Abstract Syntax Tree to find the
“top-level” expression, i.e. the first node whose parent
is not also an expression. The top-level expression is
the root of our dynamic evaluation tree, ensuring vi-
sualizations remain consistent during the evaluation
of complex expressions.

We produce a modified representation of the ex-
pression’s source code using Clang’s lexing and pre-
processing systems. We iterate over each prepro-
cessed token in the expression’s source code. If the
token was expanded from a user-defined macro then
we add all of the expanded tokens to the modified rep-
resentation. If the token was expanded from a macro
defined in a system header, then we add the raw
tokens covering the range the macro was expanded
from. If the token was not expanded from a macro
then we simply add it as-is. Tokens do not include
newlines, so this method also fulfils our requirement
of producing a single line of source code.

For an example of handling user-defined macros,
consider Listing 2 (above right). The top-level expres-
sion is the initializer of metres: from the 2 to the final

4http://clang.llvm.org

closing parenthesis. The tokens 2 and * are added to
the modified representation as-is, because they do not
involve macro expansion. The next token, 6372797,
is expanded from a macro defined in the user’s source
code, so we add the expanded tokens to the modified
representation. All remaining tokens are added as-is,
because they do not involve macro expansion.

Listing 2 User defined macro

#define EARTH_RADIUS_IN_METRES 6372797

double metres = 2 * EARTH_RADIUS_IN_METRES
* asin(sqrt(x));

For an example of handling macros that are de-
fined in system headers, consider the use of S_ISREG
shown in Listing 3 (below). The top-level expression
is the if statement’s condition. The first token is
expanded from a macro that was defined in a sys-
tem header, so we find the area that the macro was
expanded from and add the raw tokens to the modi-
fied representation: S_ISREG(st.st_mode). The ex-
panded tokens are discarded.

Listing 3 System macro expansion

Raw:
if (S_ISREG(st.st_mode)) {

Preprocessed:
if (((((st.st_mode)) & 0170000) == (0100000))) {

Figure 1: System macro evaluation

We annotate only the topmost expression from the
body of expanded system macros in order to produce
the “black box” representation discussed in Section 2.
For example, consider the dynamic evaluation tree
for Listing 3 shown in Figure 1 (above): the topmost
node from the expanded body is shown (the == op-
erator, with value 1), and all other nodes from the
expanded body are hidden (e.g. the & operator). We
display nodes represented by the expanded argument
to visualize the behaviour of the student’s code.

The system next determines each expression’s an-
notation text. SeeC provides information about the
value produced by any expression’s most recent eval-
uation. For example we will refer to the nodes in
Figure 1. If the node’s expression is a pointer or an
lvalue then we use descriptive placeholder text for the
annotation (e.g. the “(lvalue)”). For all other ex-
pressions we use SeeC’s string representation of the
value (e.g. the “1”). Annotation text that is too wide
for the node is truncated, e.g. the node representing
st is truncated from the full text “(lvalue)”.

SeeC automatically detects several kinds of run-
time errors during program execution, and provides
information about detected errors during replay. We
draw a dotted red line surrounding a statement’s node
if a runtime error was detected during that state-
ment’s execution, so that students may quickly locate



errors in the dynamic evaluation tree. Figure 2 shows
the dynamic evaluation tree rendered when an invalid
index is used as a subscript of argv.

Figure 2: Statement with detected runtime error

The dynamic evaluation tree is a concise visualiza-
tion of expression evaluation, but more information is
available. To maintain clarity we use the “drill down”
design, showing the following details in a tooltip when
the mouse cursor hovers over an annotation:

• The complete annotation text.

• The expression’s type. This allows students to
observe the behaviour of type conversions (both
implicit and explicit), and may be useful for de-
bugging arithmetic errors (e.g. accidental use of
integer division).

• A natural language explanation of the expres-
sion, as described by Heinsen Egan & McDonald
(2014).

• A natural language description of any runtime
errors that SeeC detected during the statement’s
execution.

Figure 3 shows an example of this tooltip. Further in-
formation and functionality is provided by integrating
with, and deferring to, SeeC’s other systems.

4 Integration with SeeC

The SeeC tool shows several complementary visual-
izations when replaying execution traces. We often
reference these visualizations because the dynamic
evaluation tree alone cannot conveniently represent
all expression values, as we discussed in Section 2.
In several situations we use placeholder text and di-
rect students to other visualizations, e.g. to view an
lvalue’s designated object in memory.

Moving the cursor over a node in the dynamic
evaluation tree causes its associated expression to be
highlighted, in both the modified representation of
the source code and the regular source code window.
If the expression is an lvalue and has been evaluated,
then its designated object will also be highlighted in
the memory visualization window. Figure 3 shows
both highlights: lon2 is outlined in the source code
window on the left, and lon2’s designated object is
highlighted in the memory visualization on the right.
If the expression is a pointer then the pointee object is
also highlighted; this is necessary for observing rvalue
pointers.

SeeC provides “contextual navigation” options,
which we have also made accessible through the dy-
namic evaluation tree. Right clicking on any node
provides navigation options based on the associated
expression: move backward to the last time the ex-
pression was evaluated, or move forward to the next
time the expression was evaluated. For lvalue expres-
sions we also provide navigation based on the desig-
nated object’s memory: move backward to its alloca-
tion, move forward to its deallocation, move backward

to the prior time the memory was modified, or move
forward to the next time the memory was modified.

5 Comparing visualizations

Our dynamic evaluation tree is not yet integrated
with SeeC’s source code window in the manner pro-
posed by Lahtinen & Ahoniemi (2009): it occupies its
own window within SeeC, in the manner of traditional
expression evaluation visualizations. In this section
we compare our implementation with existing visual-
izations, arguing that it offers several benefits despite
not yet consolidating these windows. We will compare
these visualizations with reference to Cognitive Load
Theory as described by Sweller et al. (1998), and to
the guidelines that Ware (2008) provides for informa-
tion visualization based on current understandings of
human perception and cognition.

Cognitive Load Theory provides guidelines for rep-
resenting information to optimize intellectual perfor-
mance and promote knowledge acquisition. These
guidelines relate to optimizing the use of working
memory: information must be in working memory in
order to be processed, and working memory is ex-
tremely limited. Effective representations decrease
extraneous cognitive load : the effect on working mem-
ory load of the manner in which information is pre-
sented, or of the activities required by students, i.e.
that which is not intrinsic to the material at hand.
Decreasing extraneous cognitive load enables students
to devote more working memory to performing tasks
and acquiring knowledge. This is particularly impor-
tant when dealing with material that has a high in-
trinsic cognitive load. The Split-Attention Effect de-
scribed by Sweller et al. (1998) is especially relevant to
our comparison of visualizations. The Split-Attention
Effect occurs when a student must mentally integrate
two distinct sources of information in order to under-
stand them, e.g. textual information that refers to a
diagram, where neither the textual information nor
the diagram are effective independently.

On the basis of dozens of experiments under
a wide variety of conditions, the evidence
suggests overwhelmingly that it has nega-
tive consequences and should be eliminated
wherever possible. (Sweller et al. 1998)

Ware (2008) provides a wealth of information con-
cerning the effective design of information visualiza-
tions. Of particular relevance to program visualiza-
tion systems are the recommendations on optimizing
the cognitive process:

The ideal cognitive loop involving a com-
puter is to have it give you exactly the in-
formation you need when you need it. This
means having only the most relevant infor-
mation on screen at a given instant. It also
means minimizing the cost of getting more
information that is related to something al-
ready discovered. This is sometimes called
drilling down. (Ware 2008)

There are two possibilities when attempting to get
information related to something already discovered:
either it is displayed somewhere else on the screen,
or the user must perform some action to cause it to
be displayed. Eye movements are much faster than
mouse movements, but displaying too much informa-
tion on screen will increase the difficulty of searching
for any particular piece of information.

With this information in hand, let us now compare
SeeC’s implementation of dynamic evaluation trees



Figure 3: SeeC’s highlighting and tooltip

Figure 4: Jeliot 3 source code (left) and expression evaluation (right)

with the existing visualizations of expression evalua-
tion used by novice focused programming tools.

Figure 4 shows a completed expression evaluation
in Jeliot 3: operators and values are shown in the
expression evaluation area, but students must con-
sult the source code window for any other informa-
tion about the expression. Thus the observed re-
peated switching of visual attention that motivated
Lahtinen & Ahoniemi (2009) to propose the dynamic
evaluation tree. This is a clear example of the Split-
Attention Effect: the expression evaluation area alone
is unintelligible, and students are forced to mentally
integrate information from other windows in order to
make sense of it. SeeC’s dynamic evaluation tree,
shown in Figure 5, contains a modified representation
of the top-level expression’s source code, so switching
visual attention to the main source code window is
only necessary when referring to other expressions or
to the original representation.

Figure 5: SeeC

The dynamic evaluation tree maintains a clear
mapping between values and source code: the expres-
sion that produced a value occupies the same horizon-
tal space as the value’s node. Consider finding the
expression that produced the value 35.3522 used in
the division operation: in Jeliot 3 students must find
the corresponding division operator in the source code
window and then identify the left operand; in SeeC
students can simply look at the top of the dynamic
evaluation tree to see the source code occupying the
same space as the value, or move their mouse cursor
over the value to have that source code automati-
cally highlighted. If a student wishes to determine
why this expression produced this value using Jeliot 3
then they must find the correct subtraction opera-
tion in the evaluation history, perhaps by searching
the right-hand side of the operations for the chosen

value. Students using SeeC can simply look at the
value’s children in the dynamic evaluation tree.

SeeC consistently uses highlighting to visualize re-
lationships and thus minimize the cost of finding re-
lated information, both within the dynamic evalua-
tion tree and between different visualizations. We
can see this highlighting in Figure 3 (above). The ac-
tive expression is outlined in yellow in both the source
code window and the dynamic evaluation tree. The
annotation under the mouse cursor has its associated
expression highlighted in violet, and as it is an lvalue
the designated object is similarly highlighted in the
memory visualization. This method is applied consis-
tently throughout SeeC, e.g. moving the mouse cur-
sor over an expression in the source code window will
highlight the corresponding expression (and its pro-
duced value) in the dynamic evaluation tree.

In Jeliot 3, when a variable’s value is used in an
expression an animation shows the value “flying in”
to the expression evaluation area. This provides only
a transient association which, if it is important to
the student’s task, must be held in working memory,
unnecessarily burdening their working memory load.
Furthermore, the student may not know whether the
association is important at the time the animation oc-
curs, and there is no option to display the association
after the fact: instead, students must determine the
association themselves by mentally integrating infor-
mation from Jeliot 3’s multiple displays.

Bruce-Lockhart et al. (2007) described The Teach-
ing Machine, a program visualization system support-
ing subsets of the Java and C++ languages, which
also uses highlighting to illustrate relationships be-
tween different visualizations. Figure 7 provides an
example: the active top-level expression’s source code
is highlighted in yellow, and the active sub-expression
is an lvalue whose designated object (lon1) is also
highlighted in yellow. If the student wishes to see the
relationship between a different sub-expression and
the values in memory, they must step backwards or
forwards until that sub-expression is active.

The Teaching Machine visualizes expression eval-
uation using expression rewriting, in which an evalu-
ated sub-expression’s source code is replaced with its
resulting value. Figure 6 shows the rewrite caused by
an evaluation in The Teaching Machine: the under-
lined source code is the active sub-expression, which
will be replaced by its result when the student steps
forward. This visualization shows no history: stu-
dents must step backwards to see previous operations.
Furthermore, an operation’s operands and result are



not simultaneously visible, so considering an opera-
tion requires a student to hold relevant information
in working memory while stepping forwards or back-
wards. Effectively, the student is required to mentally
integrate information from two visualizations which
cannot be displayed simultaneously. The dynamic
evaluation tree does not require this information to
be held in working memory, because it is always ac-
cessible via rapid eye movements or mouse hovering.

Figure 6: The Teaching Machine 2’s rewriting

Expression rewriting is also used by WADEIn, a
web-based tool designed to help students construct
knowledge of C’s expression evaluation rules, pre-
sented by Brusilovsky & Spring (2004). WADEIn
annotates the source code of an expression with the
order in which the individual sub-expressions will
be evaluated (shown as numbers beneath the sub-
expressions). The evaluation of the complete expres-
sion is visualized by a “shrinking copy” of the source
code: the active sub-expression is copied into an
“evaluation area”, its evaluation is visualized, and the
result then replaces the original sub-expression in the
“shrinking copy”. Only the active sub-expression’s
evaluation is shown, so students must step backwards
and forwards to observe the evaluation of different
sub-expressions. WADEIn is a tutoring system for
isolated expressions: it supports only mathematical
and logical operators with int and double type vari-
ables. The system tracks the student’s exposure to
different operators, increasing the speed of animation
and removing certain sub-steps as the student’s “level
of knowledge” increases.

The dynamic evaluation tree is the only method
of visualization that shows every step of a complex
expression’s evaluation in a single image while main-
taining relationships from evaluated sub-expressions
to their original source code, and from lvalue expres-
sions to their designated objects. Considering the ad-
vice and information provided by Sweller et al. (1998)
and by Ware (2008), we believe the dynamic evalu-
ation tree is a significant advancement in terms of
both reducing extraneous cognitive load and optimiz-
ing the process of finding information that is related
to something already discovered.

6 Limitations and future work

Future developments should be guided by the require-
ments of novice programmers learning the C program-
ming language, thus the most important remaining
task is to evaluate the dynamic evaluation tree’s us-
age by novice programmers. We are currently inves-
tigating SeeC’s usage by students in our second year
course covering the C programming language and Op-
erating Systems, and will be collecting feedback from
students including their perceptions of the dynamic
evaluation tree visualization and their suggestions for
future development. During our own development
and use of the dynamic evaluation tree we have iden-
tified some potential areas of investigation, which we
describe in the remainder of this section.

We use Clang’s expressions to generate our dy-
namic evaluation tree. This reduces our system’s im-

plementation requirements and provides robust, com-
plete support for the C programming language, but
could expose technical details that may confuse novice
programmers. We hide some information from stu-
dents: for example, in Figure 5, we hide the expres-
sions representing the reference to to_radians and its
decay to a function pointer. It may be useful to pro-
vide an option to display all expressions, or to imple-
ment an adaptive system that reveals technical details
when a student’s knowledge is sufficiently advanced.

User-controlled information eliding may also be
useful for handling macro expansion. Our imple-
mentation either fully expands or does not expand
macros, but in some situations it may be useful to
show a partial expansion. Listing 4 shows a definition
for the function-like macro S_ISREG; a raw use of this
macro; and a partial expansion of this use, in which
the expanded tokens have not undergone rescanning
which would have expanded S_IFMT and S_IFREG.
Showing S_IFMT and S_IFREG rather than their ex-
panded numeric constants may be more informative
than the fully preprocessed code (e.g. shown in List-
ing 3). Students could interactively control whether
individual macros are expanded, allowing them to in-
spect the preprocessor’s actions and to select an ap-
propriate representation for the task at hand.

Listing 4 Partial macro expansion

Macro definition:
S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

Raw:
S_ISREG(st.st_mode)

Partially expanded:
(((st.st_mode) & S_IFMT) == S_IFREG)

The dynamic evaluation tree visualizes the values
produced by each expression, but it does not represent
expressions’ side effects. For example, a postfix in-
crement operator’s node would show the value loaded
from the operand’s designated object, but would not
indicate that the object’s value was modified. This
problem is generalised by annotating function calls,
which may have numerous side effects. It may be
useful to visually indicate that an annotation’s asso-
ciated expression caused some side effects. The exact
nature of the side effects could be represented in the
tooltip produced by hovering the mouse cursor over
the annotation.

7 Summary

The dynamic evaluation tree concisely visualizes ex-
pression evaluation while maintaining a visual rela-
tionship between each expression’s source code and its
produced value. The complete history of a complex
expression evaluation can be shown in a single static
frame, enabling students to rapidly scan each step
of the evaluation. In this paper we generalised the
dynamic evaluation tree to account for arbitrary ex-
pressions in the C programming language, presented
our implementation of the dynamic evaluation tree for
the novice-focused program visualization and debug-
ging tool SeeC, and compared this implementation to
previous visualizations of expression evaluation.

We believe that the complicating factors discussed
and mitigated within this work will support attempts
to implement the dynamic evaluation tree in other
novice-focused tools, regardless of their supported
programming languages. For example, the difficul-
ties of representing pointers may also apply to the
representation of references in Java or Python.



Figure 7: The Teaching Machine 2’s highlighting

The dynamic evaluation tree was introduced by
Lahtinen & Ahoniemi (2009) with the intention of re-
ducing novice programmers’ switching of visual atten-
tion while using program visualization tools. To our
knowledge, we have presented the first implementa-
tion of this concept. We believe this is a robust, main-
tainable implementation and yet its development was
straightforward, which speaks to the underlying SeeC
system’s potential as a foundation for novice-focused
program visualization research.

Finally, this implementation enables investigation
of the dynamic evaluation tree’s usefulness for novice
programmers learning the C programming language.

8 Acknowledgements

This research is partially supported by an Australian
Postgraduate Award.

References

Boustedt, J., Eckerdal, A., McCartney, R., Moström,
J. E., Ratcliffe, M., Sanders, K. & Zander, C.
(2007), ‘Threshold concepts in computer science:
Do they exist and are they useful?’, SIGCSE Bull.
39(1), 504–508.

Bruce-Lockhart, M., Norvell, T. S. & Cotronis, Y.
(2007), ‘Program and algorithm visualization in
engineering and physics’, Electron. Notes Theor.
Comput. Sci. 178, 111–119.

Brusilovsky, P. & Spring, M. (2004), Adaptive, En-
gaging, and Explanatory Visualization in a C Pro-
gramming Course, in ‘ED-MEDIA’2004 - World
Conference on Educational Multimedia, Hyperme-
dia and Telecommunications’, pp. 21–26.

Fitzgerald, S., Lewandowski, G., McCauley, R., Mur-
phy, L., Simon, B., Thomas, L. & Zander, C.
(2008), ‘Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers’,
Computer Science Education 18(2), 93–116.

Heinsen Egan, M. & McDonald, C. (2014), Program
visualization and explanation for novice C pro-
grammers, in ‘Sixteenth Australasian Computing
Education Conference (ACE 2014)’, Vol. 148 of
CRPIT, ACS, Auckland, New Zealand, pp. 51–57.

Lahtinen, E. & Ahoniemi, T. (2009), ‘Dynamic evalu-
ation tree for presenting expression evaluations vi-
sually’, Electronic Notes in Theoretical Computer
Science 224, 41 – 46. Proceedings of the Fifth Pro-
gram Visualization Workshop (PVW 2008).

Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M.
(2004), Visualizing programs with Jeliot 3, in ‘AVI
’04: Proceedings of the Working Conference on Ad-
vanced Visual Interfaces’, ACM, New York, NY,
USA, pp. 373–376.

Rountree, J. & Rountree, N. (2009), Issues regarding
threshold concepts in computer science, in ‘Pro-
ceedings of the Eleventh Australasian Conference
on Computing Education - Volume 95’, ACE ’09,
Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, pp. 139–146.

Sweller, J., van Merrienboer, J. & Paas, F. (1998),
‘Cognitive architecture and instructional design’,
Educational Psychology Review 10(3), 251–296.

Ware, C. (2008), Visual Thinking for Design, Morgan
Kaufmann Publishers, 30 Corporate Drive, Suite
400, Burlington, MA, USA.


