
Program visualization and explanation for novice C programmers

Matthew Heinsen Egan1 Chris McDonald2

School of Computer Science and Software Engineering
University of Western Australia
Crawley, Western Australia 6009

Email: 1m.heinsen.egan@graduate.uwa.edu.au
2chris.mcdonald@uwa.edu.au

Abstract

Program visualization and natural language explana-
tions of program behaviour have been shown to assist
novice programmers with improving their program-
ming knowledge, correcting misunderstandings, and
debugging programs. These techniques have been
used in several novice-focused debugging systems, but
few have been developed for the C programming lan-
guage – despite it being widely reported as a difficult
language for novices. We present robust, maintain-
able systems for visualizing the memory state and
explaining the behaviour of programs written in the
standard C programming language.

Keywords: Novice programmers, debuggers, visual-
ization

1 Introduction

The standard C programming language can be espe-
cially difficult for newcomers. In particular, pointers
and manual memory management can present diffi-
culties both in understanding at a conceptual level,
and in debugging the laconically described runtime
errors which result from their misuse. Most newly
developed novice-focused debugging systems are de-
signed for object-oriented programming languages, as
introductory teaching has focused on these languages,
and the most notable tools developed to assist novice
C programmers are predominantly unmaintained.

Research from the fields of programming languages
and compilers has developed many advanced debug-
ging techniques, but they are typically only supported
by tools designed for expert programmers, rather
than for novices. The complexity of these tools, and
the time required to learn their use, at even a modest
level, are often insurmountable hurdles for novice stu-
dents. Furthermore, while these tools can be used to
locate runtime errors, they do not assist novice pro-
grammers to understand those errors, or more gener-
ally to understand the behaviour of their programs.

Several novice-focused tools have implemented
graphical program visualizations and automatically
generated explanations of program behaviour. These
features have been shown to assist novice program-
mers with constructing knowledge and debugging pro-
grams in numerous evaluations, such as those de-
scribed by Brusilovsky (1993), Smith & Webb (1995),

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the 16th Australasian Computer Educa-
tion Conference (ACE 2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 148, Jacqueline Whalley and
Daryl D’Souza, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

Moreno & Joy (2007), and Cross et al. (2009). How-
ever, few of these tools have supported the C pro-
gramming language, and those that do are typically
incomplete or unmaintained.

In this paper we introduce novice-focused systems
for creating graphical visualizations of the runtime
memory state of C language programs, and for gen-
erating natural language explanations of C program
fragments. Our systems are designed to be robust
and reusable. They build upon a previously devel-
oped novice-focused debugging system for the C pro-
gramming language, augmenting the existing runtime
error detection and execution tracing with program
visualizations and natural language explanations.

The remainder of this paper is organized as fol-
lows: Section 2 discusses prior work in this area, Sec-
tion 3 describes the project that acts as the founda-
tion of our work, Section 4 describes our graphical vi-
sualization system, Section 5 describes our system for
generating natural language explanations, Section 6
discusses the integration of these systems into the
foundation project. We finally summarize our dis-
cussion and highlight future plans in Section 7.

2 Prior work

Zimmermann & Zeller (2002) introduce a tool that
automatically extracts memory graphs from a pro-
gram. Their tool extracts information about a pro-
gram’s memory state using the GNU Project Debug-
ger – a free, open source debugger that supports many
languages and platforms1. The system is not designed
for novice programmers, but they discuss some of the
challenges involved in automatically creating graphs
from the memory of C language programs. These
challenges are rarely discussed in relation to novice-
focused tools, though they still exist in novice pro-
grams. A summary of their discussion of the most
prevalent issues follows:

Invalid pointers. In C a pointer may reference in-
valid memory. To dereference such a pointer
would introduce garbage into the graph. Their
system determines valid pointers by querying the
debugger to find valid memory areas.

Dynamic arrays. Dynamic memory allocations can
be used to allocate arrays of arbitrary size. C
has no standard means to find out how many el-
ements were allocated, thus any analysis of a pro-
gram’s memory must determine this itself. Their
solution is to query the debugger to find the size
of the memory area that is occupied by the array,
and determine the maximum number of elements
that will fit within this area.

1http://www.sourceware.org/gdb/



Unions. C has no standard method for determining
which member of a union is active. Zimmer-
mann & Zeller attempt to select a single mem-
ber to use when constructing a memory graph:
“To disambiguate unions, we employ a couple
of heuristics, such as expanding the individual
union members and checking which alternative
contains the smallest number of invalid pointers.
Another alternative is to search for a type tag –
an enumeration type within the enclosing struct
whose value corresponds to the name of a union
member. While such heuristics mostly make good
guesses, it is safer to provide explicit disambigua-
tion rules either hand-crafted or inferred from the
program.”

VIP is a novice-focused program visualization sys-
tem that supports a subset of the C++ programming
language, presented by Virtanen et al. (2005). It dis-
plays the evaluation of each statement in detail, and
supports reversible visualizations. Example programs
can be embedded with special inline comments, hid-
den from the user, which can provide explanations at
certain points of execution. VIP uses a custom in-
terpreter and is designed for use only with small pro-
grams. It was not formally evaluated, but it was made
available to students in an introductory programming
course whose assessment of the system was altogether
positive according to a questionnaire performed near
the end of the course.

Hundhausen & Brown (2007) described ALVIS, a
“radically dynamic” programming environment: each
change to the program causes the system to re-parse
the code and dynamically update the accompanying
program visualization. ALVIS supports only a sub-
set of the C programming language. This reduces the
difficulties of visualization, but also limits the useful-
ness of the system. Usability studies performed with
novice programmers indicated that ALVIS is useful
for debugging.

HDPV is a data structure visualization system for
programs written in C, C++, or Java, presented by
Sundararaman & Back (2008). In HDPV’s design,
language-dependent program monitors send informa-
tion to a language-independent visualizer, which dis-
plays the monitored program’s runtime state using a
force-directed graph layout. Two monitors are de-
scribed: a monitor for C/C++ programs, which uses
binary instrumentation; and a monitor for Java pro-
grams, which uses bytecode instrumentation. The
visualizer is implemented using the prefuse toolkit,
and allows the user to manipulate the visualization by
panning, zooming, repositioning nodes, or eliding sec-
tions of the graph. The visualizations are intended to
be usable for identifying errors in the program’s run-
time state, such as buffer overflows or memory leaks,
or for identifying logical errors in the program’s data
structures. HDPV’s effectiveness has not been eval-
uated, and it appears to be unavailable. There is no
discussion, or example, of handling the difficulties of
visualizing the memory of C language programs, such
as invalid pointers or unions.

Brusilovsky et al. (2006) surveyed teachers of
programming-related subjects to discover which top-
ics were considered important, but difficult to teach
and learn, and to gather opinion on the usefulness
and potential of program visualization in relation to
those topics. The authors describe the development of
“focused visualization environments” to explore spe-
cific topics in detail. Our work is more general in
that it is designed to assist novices with debugging
their own programs, however, it does intrinsically vi-
sualize many of the topics most frequently considered

to be critical or difficult, such as parameter passing,
recursion, scope, pointers, and memory allocation.
Despite the rarity of combining graphical visualiza-
tions with natural language explanations, the survey
found this to be a desirable feature: “The majority of
respondents (89%) felt enhancing graphical visualiza-
tion with textual visualization would help improve the
value of visualization.”

Brusilovsky (1993) formally evaluated the de-
bugging effectiveness of program visualization with
ITEM/IP-II. This program visualization system sup-
ports an educational mini-language named Tortoise,
and generates textual explanations of program exe-
cution. The evaluation’s subjects were 30 students,
who used the ITEM/IP-II system to solve problems
in their introductory programming course. When a
student’s solution was in error, they were given an in-
creasing amount of assistance until they understood
the location and source of the bug: firstly, knowledge
that there is an error; then the results of the student’s
program and a model program, on the test that pro-
duced the error; then the visual execution of the stu-
dent’s program on the test that produced the error;
then a lab assistant vocally simulating explanatory
visualization; finally the lab assistant would attempt
to explain the error using some other means. Stu-
dents only required the lab assistant’s explanation in
16% of cases. Visualization and simulated explana-
tory visualization effectively assisted students in 39%
and 20% of cases, respectively.

Explanatory program visualization also features in
Bradman, a system designed to assist novice program-
mers learning C, presented by Smith & Webb (1995).
Bradman is a visual interpreter which “assists the
user by giving him/her a visible model of the workings
of the program” and an ”explicit, detailed explanation
of the effect of each statement as it is executed.” Ex-
perimental evaluation of Bradman’s explanatory visu-
alization, wherein students used Bradman either with
or without the feature, showed that students with ac-
cess to the feature felt more strongly and more often
that Bradman assisted them in finding bugs.

The benefits of explanatory systems are intuitive:
many bugs arise from an incomplete or incorrect un-
derstanding of the programming language, and a nat-
ural language explanation of the source code can en-
able students to gain or correct the knowledge that is
necessary to understand and correct such bugs. Pre-
vious explanatory systems for the C programming
language have relied on custom parsing solutions.
Such systems are susceptible to incompletely support-
ing the language, due simply to the size and complex-
ity of the task. Using custom parsing implementa-
tions also reduces the ability to reuse the explanatory
system in other tools, and increases development and
maintenance costs.

3 SeeC

Our work extends the SeeC project introduced by
Heinsen Egan & McDonald (2013a): a novice-focused
system for the standard C programming language
that provides execution tracing and runtime error de-
tection. SeeC itself is built upon the Clang project2:
a modular collection of libraries which implement a
front-end for compiling C, C++, Objective C, and
Objective C++, but are also designed to support di-
verse uses by external clients. This provides SeeC
with robust support for the C programming lan-
guage while avoiding the unsustainable maintenance

2http://clang.llvm.org



requirements inflicted by bespoke implementations of
parsing, compiling, or interpreting. For a detailed ex-
planation of the SeeC system, see the discussion by
Heinsen Egan & McDonald (2013b).

SeeC uses a slightly modified version of the Clang
front-end to perform compile-time instrumentation of
students’ programs. The produced executables con-
tain additional code that both checks for runtime er-
rors and creates a trace of the execution. The trace
can be used to recreate the visible state of the pro-
gram at any point of time in the recorded execution.

Clang’s parsing and semantic analysis libraries
may be used to create an Abstract Syntax Tree (AST)
from a program’s source code. Each node in the AST
represents a declaration or statement in the program
and provides rich semantic information – the same in-
formation that is used during compilation. When an
execution trace is loaded the program’s AST is recon-
structed, allowing us to link runtime states to relevant
AST nodes. This provides a mapping between the
program’s static source code and its dynamic state.

The root of a recreated state is the Process State.
It provides access to a Thread State for each recorded
thread of execution, a Global Variable State for each
global variable, a state for each dynamic memory al-
location, and a list of currently open FILE streams.

A Thread State contains a Function State for each
function in the thread’s call stack.

A Function State is linked to the AST node for the
executing function’s declaration, and allows clients to
get the AST node for the currently executing or most
recently executed statement. It provides access to the
state of the function’s parameters and of all local vari-
ables which are in scope. It also maintains informa-
tion about all runtime errors that have occurred dur-
ing the function’s execution. Finally, it can be used
to retrieve a Value object for any statement which
has been evaluated during the function’s execution.

The state of a parameter, local variable, or global
variable is linked to the AST node for the variable’s
declaration. It can also be used to retrieve a Value
object for the variable.

The state of a dynamic memory allocation pro-
vides the address and size of the allocation. It also
links to the AST node of the statement that caused
the allocation.

The Value object is the primary method for in-
terpreting the recreated memory state. A Value may
represent a temporary value produced by the eval-
uation of an expression, or a value that is stored in
memory. We can query a Value to get Clang’s type for
the value, determine whether the value is in memory,
get the address of the value in memory, get the size of
the value, determine whether the value is completely
or partially initialized, and to get a string describing
the value. There are five specific kinds of Value:

Scalars allow clients to check if they are zero.

Arrays provide the number of elements, and access
to a Value object for any particular element.

Records provide the number of members in the
record, access to the AST node for the decla-
ration of any particular member, and access to a
Value object for any particular member.

Pointers allow clients to determine the highest offset
that is currently valid to use when dereferencing
the pointer, get the raw value of the pointer, get
the size of the referenced type, and get a Value
object for the dereference of the pointer with a
given offset.

FILE pointers allow clients to get the raw value of
the pointer, and to determine whether or not the
pointer is valid (i.e. whether or not it references
a currently open FILE stream).

4 Graph Visualization

Our system for graph visualization is built upon
SeeC’s representation of recreated states (described
in Section 3). It operates on a single Process State
and produces a graph in the DOT language. We will
not describe the language in detail (for more informa-
tion see the Graphviz website3), but it is important to
describe one feature that our system uses extensively:
“HTML-like” labels.

An HTML-like label allows a graph node’s label
to be described similarly to an HTML table element.
We use this to render related values within a single
graph node, e.g. in Figure 1 there are three nodes: one
for the function main, one for the function getright,
and one for a block of dynamically allocated memory.
Edges can be attached to specific cells inside the la-
bels. This allows us to produce concise graphs while
accurately representing the source and destination of
pointers.

main

ptr

left 1

right 2

getright

fooptr
iptr

Figure 1: Pointers to struct and member

We previously discussed a number of difficulties
with generating graphs of C programs’ memory that
were described by Zimmermann & Zeller (2002).
Some of these issues are effectively handled by SeeC’s
representation, in particular the validity of pointers
and the size of dynamic arrays are already determined
by the underlying system. We do not attempt to un-
ambiguously display unions, rather we simultaneously
display all members of the union so that students can
examine their behaviour. However, pointers can also
cause a region of memory to have conflicting inter-
pretations, and in this case we do attempt to reduce
ambiguity by showing a single interpretation of mem-
ory, the exact process of which we will describe later
in this section.

The first stage of our graph generation system is
to inspect all Values in the Process State. We re-
cursively inspect all elements of arrays, all members
of records, and all dereferences of pointers. During
this process we record all pointer relationships into
an object called the Expansion.

The next stage is to generate the layout for all
global variables, threads, and memory areas. Each of
these layouts can be generated independently of the
others. A layout contains the label of the node in the

3http://www.graphviz.org



DOT language, the node’s identifier, the memory area
that the node represents. It also contains information
for where edges should be attached for each Value
that is represented in the node. This will be used in
the final stage to create edges for all of the pointers
in the state.

Each thread is represented by a sub-graph which
contains the nodes for each function in the thread’s
call stack. These nodes are aligned horizontally and
ordered according to the order of the call stack.

A Function State’s label has a title row containing
the name of the function. This is followed by one row
for each parameter and local variable, with the name
of the parameter or local variable occupying a cell on
the left, and the Value occupying a cell on the right.

A Value’s label contents are generated by a Value
Layout Engine. The graph generation system sup-
ports multiple Value Layout Engines, and allows stu-
dents to specify which engine should be used for any
particular Value. We can also provide new Value Lay-
out Engines, provided they implement the appropri-
ate interface. Engines are not required to handle all
potential Values: the engines may be queried to deter-
mine whether or not they are capable of performing
the layout for a particular Value. The default be-
haviour is to use the first engine that is capable of
performing the layout for each Value. If the student
has specified a particular engine to use for a Value
and that engine reports that it cannot perform the
layout, perhaps because some property of the Value
has changed, then the graph generator will fall back
to the default behaviour.

The default Value Layout Engine is capable of per-
forming the layout for any Value. It generates the
layout based on the particular kind of Value, as fol-
lows:

Scalar Fill the cell with the string description of the
Value.

Array Create a new sub-table in the cell, with two
columns, and one row for each element in the
array. Place the index of the elements in the left
column’s cells, and then recursively layout the
right column’s cells using the elements’ Values.

Record Create a new sub-table in the cell, with two
columns, and one row for each member of the
record. Place the names of the members in the
left column’s cells, and then recursively layout
the right column’s cells using the members’ Val-
ues.

Pointer If the pointer is uninitialized then fill the
cell with the placeholder “?”. If the pointer’s
raw value is zero then fill the cell with the text
“NULL”. If the pointer has no valid dereferences
then fill the cell with the placeholder “!”. Other-
wise, leave the cell empty – it will be connected
appropriately when edges are created.

The process for generating the layout for a mem-
ory area begins with selecting which type should be
displayed, because a memory area may have multiple
references of differing types. This does not necessar-
ily constitute an error. Selection of the type proceeds
in the following manner:

1. Remove all void pointers from the list of ref-
erences. If there are no other references, then
layout the memory area as void.

2. Remove all pointers to incomplete types. If there
are no other references, then layout the memory
area using the incomplete type.

3. Remove all pointers which reference the child of
another pointer’s dereference. This handles situ-
ations such as the program in Listing 1, where a
memory area is referenced by both a pointer to
a struct and a pointer to one of that struct’s
members. A visualization of this program was
shown in Figure 1.

4. If the remaining pointers have the same type,
then perform the layout using this type. Other-
wise we layout using one of the conflicting types
(the other references will appear type-punned).
Alternatively, we could render all types simul-
taneously and use a visual cue to indicate that
they occupy the same memory, or we could elide
all of the types and instead display an informa-
tion message indicating that multiple conflicting
types are referenced in the area.

Listing 1 Pointers to struct and member

1 #include <stdlib.h>
2
3 typedef struct {
4 int left;
5 int right;
6 } FOO;
7
8 int getright(FOO *fooptr) {
9 int *iptr = &fooptr ->right;

10 return *iptr;
11 }
12
13 int main() {
14 FOO *ptr = malloc(sizeof(FOO));
15 *ptr = (FOO){ .left = 1,
16 .right = 2 };
17 getright(ptr);
18 return 0;
19 }

After a reference has been selected, area layout is
performed by an Area Layout Engine. The operation
is analogous to a Value Layout Engine, allowing us to
create special rendering for certain types of Values.
For example, we use a layout engine for C strings to
condense the display into a horizontal representation.
We can see this in Figure 2: the default representa-
tion of an area with multiple dereferences is to display
indices on the left and values on the right, as shown
by the argument vector, whereas the C string repre-
sentation is used for the arguments, allowing a more
natural representation. The C string representation
also allows us to elide values that follow the termi-
nating null byte.

main

argc 2
argv

[0]

[1]
[2] NULL

. / a r g s \0

W o r l d \0

Figure 2: C string layout

The final stage of the graph generation is to con-
struct edges for all pointers which are in-memory, ini-
tialized, and non-null. Each pointer is considered in-
dividually. First, we find the layout of the node that



contains the memory occupied by the pointer, and
the layout of the node that contains the address ref-
erenced by the pointer. For example, consider the
variable ptr displayed in Figure 1: the memory occu-
pied by the pointer is contained by the node of main,
and the referenced address is contained by the node
of the dynamically allocated memory. Next we will
search the layouts to determine where the tail and
head of the edge should be connected. If we can-
not find a connection for either the tail or head of a
pointer then we connect the edge to the node, and
adjust the end of the edge to indicate that the value
is not rendered in the graph (currently this is repre-
sented by using a circle rather than an arrowhead).

5 Explanations

Previous studies have shown that automatically gen-
erated natural language explanations of program
source code can be useful for novice programmers.
This is an intuitive result, as many bugs can arise
from an incomplete or incorrect understanding of the
programming language, and only require completing
or correcting the appropriate knowledge before the
novice is able to correct the bug. Unfortunately, this
area lacks new developments for the C programming
language. This may be due to the difficulties of de-
veloping tools for the C programming language: the
lack of standard methods for parsing and semantic
analysis, and the complexity of the language.

Our explanatory system is built upon the Clang li-
braries, providing robust and sustainable parsing and
semantic analysis of the C programming language. It
is designed to operate independently of the SeeC sys-
tem, so that it may be reused in other Clang-based ed-
ucational tools. The system creates natural language
explanations for individual nodes in Clang’s Abstract
Syntax Trees. To illustrate the implementation of our
system, consider the small piece of code in Listing 2.

Listing 2 Example function

1 int isodd(int n) {
2 if (n % 2)
3 return 1;
4 else
5 return 0;
6 }

For this example function, Clang produces the
AST that is represented by Figure 3. Clang’s node
class hierarchy has two distinct base classes: Decl for
declarations, and Stmt for statements. Each node
contains detailed semantic information, as well as
precise locations for the node’s representation in the
source code.

The interface to the explanatory system is de-
signed to be as simple as possible. Clients pass in an
AST node, and the system returns either an explana-
tion for the node, or an error describing the reason
that the explanation could not be generated.

Each node class provides access to specific infor-
mation for the particular kind of declaration or state-
ment that it represents. The hierarchy also contains
abstract classes that provide access to information
that is shared by multiple kinds of nodes. For ex-
ample, the FunctionDecl in Figure 3 is a subclass of
NamedDecl, which allows us to retrieve the name of
a node (for this node it is “isodd”, the name of the
function). Our system uses this information to tai-
lor explanations to the specific nodes that are being

FunctionDecl isodd ‘int (int)’
ParmVarDecl n ‘int’
CompoundStmt

IfStmt
Condition:

BinaryOperator ‘int’ %
ImplicitCastExpr ‘int’

DeclRefExpr ‘int’ n
IntegerLiteral ‘int’ 2

Body:
ReturnStmt

IntegerLiteral ‘int’ 1
Else:

ReturnStmt
IntegerLiteral ‘int’ 0

Figure 3: Example function’s AST

explained, rather than using a fixed explanation for
each kind of node.

The system is also designed to be fully interna-
tionalized, for which we use the International Compo-
nents for Unicode (ICU) system4. Explanation text is
stored in an ICU resource bundle, containing a unique
entry for each kind of declaration and statement. Af-
ter the text is retrieved it is formatted using ICU’s
message formatting system, and provided with infor-
mation that we have collected from the AST node.
As an example, let us consider the generation of an
explanation for the IfStmt in Figure 3. The following
information will be collected from the node:

has condition variable Whether or not the if
statement’s condition contains a variable decla-
ration. In this case the value is “false”.

has else Whether or not the if statement has an
else branch. In this case the value is “true”.

The explanation text then uses the ICU message for-
matting system to vary the generating explanations
based on this value. For example, the explanation for
an IfStmt may contain the following:

{has else, select, true {It consists of a
condition, a body, and an else.} false {It
consists of a condition and a body}

For our if statement’s node the value of has else
was “true”, so this part of the explanation will be
formatted into the text “It consists of a condition, a
body, and an else.”

Explanations often refer to other nodes in the
AST, which may be child nodes that are contained
in a subsection of the explained node’s source code,
or may be in an altogether different location. In our
example above three AST nodes are referenced: the
if statement’s “Condition” is a BinaryOperator, its
“Body” is a ReturnStmt, and its “Else” is also a
ReturnStmt (as we can see in Figure 3).

We developed a simple system to explicitly em-
bed this referencing information into the explanatory
text. Each kind of node can provide a dictionary of
related AST nodes. Our example IfStmt provides
three: “cond” for the condition, “then” for the body,
and “else” for the else. The explanation text is mod-
ified to reference these dictionary entries as follows:

It consists of a @[cond]condition@[],
a @[then]body@[], and an @[else]else@[].

4http://site.icu-project.org



The explanation that is returned from the sys-
tem contains, as well as the formatted text, infor-
mation about the areas of text that are linked to
AST nodes. The explanation display that we inte-
grated into SeeC’s trace viewer uses this information
to highlight related AST nodes when the student’s
mouse cursor hovers over a section of the explana-
tion text. This allows novice programmers to quickly
check which area of the code is referred to by the ex-
planation, receiving instant visual feedback. A refer-
ence can also use a URL rather than a related node’s
key, providing the ability to link explanatory text to
external material. For example, we use this to link
explanations to appropriate lecture notes.

The system can optionally use information about
the runtime state of the program when generating ex-
planations. This information is provided to the sys-
tem using callback functions which receive statement
nodes and return information about the value pro-
duced by the statement: whether or not it exists, a
string describing its value, and if possible an implicit
conversion of the value to a bool. This information
is provided to the message formatting system in the
same manner as the semantic information provided
by the AST nodes. To return to our example, the ex-
planation of if statements can explain whether the
body or the else statement is executed based on the
value that was produced by the condition statement.

6 Integration into SeeC

The systems that we have introduced were devel-
oped as discrete components, with the aim of foster-
ing reuse and extension. However, we also designed
them for use by students in a simple, unified system.
We have integrated the graphical visualization sys-
tem and explanation generation system into SeeC’s
graphical trace viewer (Figure 4).

The SeeC system, described in Section 3, uses
compile time instrumentation to automatically detect
runtime errors during the execution of student pro-
grams, and to record the execution of student pro-
grams into trace files. The graphical trace viewer
loads these traces files, allowing students to inspect
the recorded state of the program at any point dur-
ing its execution. Students may navigate forwards
and backwards through the execution trace using the
simple controls at the top of the viewer.

The system also supports contextual navigation
based on particular items in the state. For example,
students may select a particular value in memory and
then navigate to the allocation of that memory, the
most recently occurring write to that memory, the
next occurring write to that memory, or the eventual
deallocation of the memory. A student may also select
a particular function call and rewind to the beginning
of the call or move forwards until the call is complete.
These features have been integrated into the display
of the graphical visualization of process states, allow-
ing students to navigate by interacting with values or
nodes in the graph.

7 Summary and Future Work

We have discussed the design and implementation of
robust, maintainable, reusable systems for visualizing
the runtime memory state of students’ C language
programs, and for generating natural language ex-
planations of those programs. These systems have
been integrated into SeeC’s graphical trace viewer,
augmenting SeeC’s existing novice-focused debugging

features. Where previous tools for the C program-
ming language have relied on custom written parsers
and interpreters, our systems are built upon the Clang
libraries which provide high quality language support
and are being constantly improved and maintained by
a strong, active community.

One of the problems with visualizing the memory
state of C language programs is the task of deter-
mining which of multiple competing types should be
rendered for a particular area of memory. Currently
we render all possible interpretations of unions. With
some modification to the underlying system we may
be able to record which member is used when storing
a value into a union, and then use this information to
render only the “active” member of the union. We
also deal with ambiguous memory caused by type-
punned pointer aliasing. We try to reduce this by se-
lecting a single type to render, and allowing students
to override this with their own selection, but in some
cases it may be useful to render multiple competing
types, using some visual cue to indicate that they oc-
cupy the same space in memory. This concept may be
difficult for novice programmers to understand, so one
would have to carefully evaluate the visualizations to
determine whether they presented useful information
or further confused students.

SeeC’s instrumentation checks for many runtime
errors. If an error is detected then it is recorded in
the execution trace, and it will be visible in the states
recreated from the execution trace. The trace viewer
currently displays runtime errors using the natural
language descriptions that are generated by the un-
derlying system, but some errors could also be dis-
played by the visualization system. For example the
error that is described in Figure 4 (displayed in-line
in the source code) is raised when a function expects
a C string but is passed a pointer to a character array
that is not null terminated. The visualization system
could highlight the referenced character array and il-
lustrate that there is no terminating null character.

Generating explanations based on AST nodes is a
practical method that allows us to leverage the Clang
libraries to provide robust and detailed explanations
of students’ programs. However, even relatively sim-
ple statements in the C programming language may
consist of several AST nodes. A student considering
an entire statement must view the explanations for
the individual AST nodes. It may be possible to cre-
ate a system which can combine fragments of expla-
nations to create a unified explanation for an entire
statement, without losing the internationalization of
our current system. A brief fragment describing a
node could link to a detailed, node-specific descrip-
tion such as those generated by our current system.

Any educational system must naturally be eval-
uated to determine its merit, though we are hopeful
that our systems will prove as beneficial to students as
the prior systems that influenced them. In the 2nd-
semester 2013 presentation of our first year course
on Operating Systems and the C Programming Lan-
guage we will employ the complete system described
here, including the graphical visualizations and nat-
ural language explanations. During this time we will
investigate students’ usage of the system to determine
whether or not they find individual components use-
ful, and to evaluate how students use those features
to debug their programs or to increase their under-
standing of the programming language.

Lahtinen (2009) argued: “If we want visualizations
to catch on in mainstream CS education, we need to
study their usage in realistic learning situations in
real CS class rooms and adapt the visualizations to
suit these conditions.” In following these guidelines,



Figure 4: Trace viewer with explanation (bottom left) and visualization (right).

as well as many similar recommendations, we aim
to study students’ use of SeeC during their regular
coursework. We plan to perform several evaluations
using various approaches in order to construct a more
complete picture of the system’s use. One method
that we intend to employ is to record students’ in-
teractions with the graphical trace viewer, allowing
us to investigate how students use the system during
the normal course of their studies and without the
interference of a human observer.

The complete SeeC system is free and open source,
including the additional components that we have in-
troduced. Interested readers are invited to contact
the authors to discuss the tool’s suitability for their
courses.

References

Brusilovsky, P. (1993), Program visualization as a de-
bugging tool for novices, in ‘INTERACT ’93 and
CHI ’93 conference companion on Human factors
in computing systems’, CHI ’93, ACM, New York,
NY, USA, pp. 29–30.

Brusilovsky, P., Grady, J., Spring, M. & Lee, C.-H.
(2006), ‘What should be visualized?: faculty per-
ception of priority topics for program visualization’,
SIGCSE Bull. 38, 44–48.

Cross, II, J. H., Hendrix, T. D., Umphress, D. A.,
Barowski, L. A., Jain, J. & Montgomery, L. N.
(2009), ‘Robust generation of dynamic data struc-
ture visualizations with multiple interaction ap-
proaches’, Trans. Comput. Educ. 9, 13:1–13:32.

Heinsen Egan, M. & McDonald, C. (2013a), Reduc-
ing novice C programmers’ frustration through im-
proved runtime error checking, in ‘Proceedings of
the 18th ACM conference on Innovation and tech-
nology in computer science education’, ITiCSE ’13,
ACM, New York, NY, USA, pp. 322–322.

Heinsen Egan, M. & McDonald, C. (2013b), Run-
time error checking for novice C programmers, in
‘Proceedings of the 4th Annual International Con-
ference on Computer Science Education: Innova-
tion and Technology’, CSEIT ’13, Global Science
& Technology Forum, Singapore, pp. 1–9.

Hundhausen, C. D. & Brown, J. L. (2007), ‘What
you see is what you code: A ”live” algorithm de-
velopment and visualization environment for novice
learners’, J. Vis. Lang. Comput. 18, 22–47.

Lahtinen, E. (2009), Students’ Individual Differences
in Using Visualizations, in A. Pears & L. Malmi,
eds, ‘Koli Calling 2008 8th International Confer-
ence on Computing Education Research’, Uppsala
University, Box 337, SE-751 05 Uppsala, Sweden,
pp. 92–95.

Moreno, A. & Joy, M. S. (2007), ‘Jeliot 3 in a demand-
ing educational setting’, Electronic Notes in The-
oretical Computer Science 178, 51–59. Proceed-
ings of the Fourth Program Visualization Workshop
(PVW 2006).

Smith, P. A. & Webb, G. I. (1995), Transparency
Debugging with Explanations for Novice Program-
mers, in M. Ducassé, ed., ‘Proceedings of the 2nd
International Workshop on Automated and Algo-
rithmic Debugging’.

Sundararaman, J. & Back, G. (2008), HDPV: inter-
active, faithful, in-vivo runtime state visualization
for C/C++ and Java, in ‘SoftVis ’08: Proceedings
of the 4th ACM Symposium on Software Visualiza-
tion’, ACM, New York, NY, USA, pp. 47–56.

Virtanen, A., Lahtinen, E. & Jarvinen, H.-M. (2005),
VIP, a Visual Interpreter for Learning Introductory
Programming with C++, in ‘Proceedings of The
Fifth Koli Calling Conference on Computer Science
Education’.

Zimmermann, T. & Zeller, A. (2002), Visualizing
Memory Graphs, in ‘Revised Lectures on Software
Visualization, International Seminar’, Springer-
Verlag, London, UK, pp. 191–204.


